

MAESTRIA EN CIENCIAS DE LA INGENIERÍA

PRIMER SEMESTRE

Nombre de la Asignatura: Introducción a la Investigación

Objetivo

Desarrollar en el alumno las competencias necesarias para diseñar, planificar, ejecutar y evaluar proyectos de investigación científica y tecnológica, utilizando metodologías adecuadas que le permitan generar conocimiento original e innovador, resolver problemas complejos en ingeniería, y comunicar de manera efectiva los resultados obtenidos, promoviendo la ética y la responsabilidad social en todas las etapas del proceso investigativo.

Unidades

Objetivo particular Introducción a la investigación científica y

- tecnológica Definición características de la investigación
- Tipos de investigación: básica, aplicada, documental, experimental
- Proceso de investigación: etapas y ciclo investigativo
- Importancia y aplicación en ingeniería

Formulación y planteamiento del problema

- Identificación del problema de investigación
- Formulación del problema y preguntas de investigación
- Objetivos generales y específicos
- Justificación y delimitación del estudio

Diseño metodológico técnicas de investigación

- Métodos cualitativos y cuantitativos
- Diseño experimental y no experimental
- Técnicas de recolección de datos: encuestas, entrevistas, observación
- Instrumentos y validación

Análisis y procesamiento de datos

- Estadística descriptiva e inferencial
- Uso de software para análisis de datos
- Interpretación de resultados
- · Validación y confiabilidad

Redacción y presentación de resultados

- Estructura de un informe o artículo científico
- Normas citación y referencias bibliográficas
- Técnicas de presentación oral y visual Publicación y difusión científica

Introducción a la investigación científica y tecnológica

Comprender los fundamentos, tipos y etapas del proceso de investigación, así como su importancia en la ingeniería para la generación de conocimiento y solución de problemas.

Formulación planteamiento problema

Desarrollar la capacidad para identificar, plantear delimitar problemas investigación claros pertinentes. У fundamentando su relevancia y formulando específicos. objetivos

Diseño metodológico y técnicas de investigación

Conocer y aplicar métodos y técnicas de investigación cualitativa, cuantitativa y mixta, así como seleccionar instrumentos adecuados para la recolección y análisis de datos.

Análisis y procesamiento de datos

Implementar herramientas y técnicas estadísticas y computacionales para el análisis riguroso de datos obtenidos en investigaciones, facilitando la interpretación y validación de resultados.

Redacción y presentación de resultados

Desarrollar habilidades para la elaboración científicos. informes artículos presentaciones claras, coherentes y éticas, efectivamente comuniquen hallazgos de la investigación.

Metodología de trabajo

La asignatura se imparte en modalidad presencial, combinando exposiciones teóricas, análisis de lecturas científicas, estudios de caso y desarrollo de proyectos de investigación aplicados al ámbito de la ingeniería. Se promueve un enfoque reflexivo y crítico del proceso investigativo, orientado a la solución de problemas complejos mediante el uso de metodologías científicas.

Durante las sesiones, los estudiantes participarán en actividades prácticas de formulación de problemas de investigación, desarrollo de preguntas y objetivos, diseño metodológico, elaboración de instrumentos de recolección de datos, y análisis estadístico utilizando herramientas computacionales como Excel, SPSS o software de código abierto. Se fomentará el trabajo colaborativo en la planeación y ejecución de investigaciones de pequeña escala.

A lo largo del curso, se realizarán talleres enfocados en la elaboración de informes científicos, redacción de artículos y preparación de presentaciones orales, con énfasis en el uso correcto de normas de citación, la integridad académica y la difusión ética de resultados. Se emplearán rúbricas para evaluar la calidad argumentativa, metodológica y comunicativa de los trabajos.

El estudiante reforzará su aprendizaje mediante la búsqueda y análisis crítico de literatura científica, el diseño de instrumentos validados, el procesamiento riguroso de datos, y la elaboración de reportes que reflejen un pensamiento lógico, estructurado y ético.

La evaluación será continua y formativa, considerando la claridad y coherencia en la formulación de problemas y objetivos, la pertinencia del enfoque metodológico seleccionado, la calidad en el tratamiento e interpretación de datos, la argumentación científica, y la organización y presentación de productos escritos y orales.

Criterios de evaluación

- Claridad y coherencia en la formulación de preguntas y objetivos
- Rigor en la revisión y análisis bibliográfico
- Aplicación correcta de métodos y técnicas de investigación
- Capacidad de argumentación y justificación científica
- Organización y presentación adecuada de documentos

Bibliografía

Básica:

- Hernández-Sampieri, R., Mendoza-Torres, C. P., & Baptista-Lucio, M. P. (2021).
 Metodología de la investigación: Las rutas cuantitativa, cualitativa y mixta (7ª ed.).
 McGraw-Hill.
- Sabino, C. (2020). El proceso de investigación: Introducción a la metodología científica (6ª ed.). Panapo.
- Creswell, J. W., & Creswell, J. D. (2022). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches (6th ed.). SAGE Publications.
- Flick, U. (2020). Introducing Research Methodology: A Beginner's Guide to Doing a Research Project (3rd ed.). SAGE Publications.

Complementaria:

- Given, L. M. (Ed.). (2020). The SAGE Encyclopedia of Qualitative Research Methods. SAGE Publications.
- Punch, K. F., & Oancea, A. (2021). Introduction to Research Methods in Education (3rd ed.).
 SAGE Publications

Nombre de la Asignatura: Estadística Matemática

Objetivo

Proporcionar al estudiante los fundamentos teóricos y prácticos de la inferencia estadística, con el fin de que sea capaz de analizar, modelar e interpretar datos provenientes de fenómenos aleatorios, aplicando métodos estadísticos rigurosos para la toma de decisiones en el contexto de la ingeniería y la investigación científica.

Unidades Fundamentos de Probabilidad

- Espacio muestral y eventos
- Reglas de probabilidad
- Probabilidad condicional e independencia
- Teorema de Bayes
- Variables aleatorias discretas y continuas

Funciones de Distribución

- Funciones de densidad y distribución
- Distribuciones discretas: binomial, geométrica, Poisson
- Distribuciones continuas: uniforme, exponencial, normal
- Funciones de distribución conjunta y marginal

Teoría de Muestreo y Estadísticos

- Tipos de muestreo
- Estadísticos y sus distribuciones muestrales
- Teorema del límite central
- Sesgo, varianza y eficiencia de un estimador

Estimación de Parámetros

- Estimación puntual: método de momentos y máxima verosimilitud
- Propiedades de los estimadores: insesgadez, consistencia y eficiencia
- Intervalos de confianza para medias, proporciones y varianzas

Pruebas de Hipótesis

- Hipótesis nula y alternativa
- Errores tipo I y tipo II
- Pruebas de una y dos colas
- Pruebas para una y dos muestras (media, proporción, varianza)
- Pruebas no paramétricas básicas

Objetivo particular

Fundamentos de Probabilidad

Comprender los conceptos fundamentales de probabilidad que sustentan el análisis estadístico de fenómenos aleatorios.

Funciones de Distribución

Analizar y aplicar funciones de distribución de probabilidad para modelar fenómenos en ingeniería y ciencias aplicadas.

Teoría de Muestreo y Estadísticos

Entender y aplicar técnicas de muestreo y propiedades de los estadísticos para la estimación de parámetros poblacionales.

Estimación de Parámetros

Desarrollar habilidades para estimar parámetros poblacionales mediante métodos puntuales y por intervalos con rigor matemático.

Pruebas de Hipótesis

Formular y aplicar pruebas estadísticas para validar hipótesis en problemas de ingeniería e investigación aplicada.

Metodología de trabajo

La asignatura se imparte en modalidad presencial, integrando exposiciones teóricas con actividades prácticas orientadas al análisis de datos y resolución de problemas reales mediante técnicas estadísticas. Se enfatiza el rigor matemático en la formulación y desarrollo de los

Posgrado e Investigación

métodos de inferencia, así como su aplicación en contextos de ingeniería e investigación científica.

Durante las sesiones, los estudiantes resolverán ejercicios individualmente y en equipo, analizarán situaciones que involucren fenómenos aleatorios, y aplicarán técnicas de estimación y pruebas de hipótesis. Se utilizará software especializado como Excel, R o Python para la simulación, modelado y visualización de distribuciones y resultados estadísticos.

Se promoverá el aprendizaje activo mediante talleres enfocados en el diseño de experimentos de muestreo, la interpretación de intervalos de confianza, el análisis de errores tipo I y II, y la evaluación del poder estadístico. Los estudiantes también trabajarán en la construcción de modelos estadísticos básicos y la elaboración de reportes que documenten su razonamiento y conclusiones.

La evaluación será continua y formativa, basada en la precisión en el desarrollo de procedimientos estadísticos, la aplicación adecuada de métodos de inferencia, la claridad del razonamiento lógico en la resolución de problemas, y el uso correcto de herramientas computacionales. Se valorará también la calidad de los reportes y la argumentación estadística.

Criterios de evaluación

- Precisión en el desarrollo matemático de conceptos estadísticos
- Correcta aplicación de métodos de estimación e inferencia
- Razonamiento lógico y coherente en la resolución de problemas
- Uso adecuado de herramientas computacionales estadísticas

Bibliografía

Básica:

- Casella, G., & Berger, R. L. (2021). Statistical Inference (3rd ed.). Cengage Learning.
- Wackerly, D. D., Mendenhall, W., & Scheaffer, R. L. (2021). Mathematical Statistics with Applications (8th ed.). Cengage.

Complementaria:

- Rice, J. A. (2021). Mathematical Statistics and Data Analysis (4th ed.). Cengage.
- Blitzstein, J. K., & Hwang, J. (2022). Introduction to Probability (2nd ed.). Chapman and Hall/CRC.

Nombre de la Asignatura: Modelos y Algoritmos de Optimización

Obietivo

Desarrollar en el alumno la capacidad para modelar, analizar y resolver problemas complejos de optimización aplicados a la ingeniería, mediante el uso de herramientas matemáticas y algoritmos computacionales avanzados, con el fin de proponer soluciones eficientes, innovadoras y sustentables que respondan a las necesidades específicas de un entorno profesional o de investigación.

Unidades

Fundamentos de la optimización

- Definición y tipos de problemas de optimización
- Optimización continua vs. discreta
- Elementos de un problema de optimización
- Función objetivo y restricciones
- Formulación matemática de problemas reales

Objetivo particular

Fundamentos de la optimización

Comprender los conceptos básicos, clasificación y formulación general de problemas de optimización, así como el papel que juegan en la ingeniería y la investigación aplicada.

Optimización lineal y entera

- Programación lineal: método simplex
- Dualidad y análisis de sensibilidad
- Programación entera: formulación y aplicaciones
- Método de ramificación y acotamiento (branch and bound)

Optimización no lineal

- Condiciones de optimalidad: Lagrange, KKT
- Métodos de gradiente y descenso
- Algoritmos para funciones convexas y no convexas
- Optimización restringida y no restringida

Aplicaciones de la optimización en ingeniería

- Optimización en diseño de procesos e ingeniería industrial
- Aplicaciones en energía, logística y manufactura
- Estudios de caso con datos reales
- Evaluación del desempeño de soluciones
- Presentación de proyectos y propuestas de mejora

Optimización lineal y entera

Aplicar técnicas clásicas de programación lineal y entera para resolver problemas estructurados, mediante métodos exactos.

Optimización no lineal

Analizar y resolver problemas de optimización con funciones objetivo y restricciones no lineales, utilizando métodos analíticos y numéricos.

Aplicaciones de la optimización en ingeniería

Desarrollar modelos de optimización en distintos dominios de la ingeniería para resolver problemas reales con restricciones prácticas.

Metodología de trabajo

La asignatura se imparte mediante una combinación de clases teóricas, sesiones prácticas computacionales y actividades colaborativas orientadas a la formulación, análisis y resolución de problemas de optimización aplicados a la ingeniería.

Durante las sesiones, los estudiantes desarrollarán modelos matemáticos a partir de problemas reales, aplicarán algoritmos de solución exacta y heurística, y evaluarán la eficiencia de las soluciones obtenidas. Se utilizarán herramientas computacionales como Excel Solver, MATLAB, Python (SciPy, PuLP) y otros entornos especializados en optimización para implementar y validar los algoritmos.

Se promoverá el trabajo autónomo y en equipo a través del análisis de casos reales, talleres de formulación de modelos, y la resolución de problemas abiertos que requieran toma de decisiones bajo restricciones. A lo largo del curso, se realizarán actividades prácticas como simulaciones, análisis de sensibilidad, y pruebas de desempeño de algoritmos en contextos aplicados.

La evaluación del curso será continua, valorando la capacidad del estudiante para formular modelos coherentes, seleccionar y aplicar algoritmos adecuados, interpretar resultados, y comunicar de manera clara y precisa las soluciones propuestas. También se considerará la calidad de los proyectos, la argumentación técnica y la capacidad de resolución de problemas complejos.

Criterios de evaluación

- Correcta formulación de modelos de optimización
- Justificación de la elección de algoritmos
- Precisión en la implementación computacional

- Análisis crítico de resultados
- Claridad en la presentación de ideas
- Aplicación efectiva del conocimiento a problemas complejos

Bibliografía

Básica:

- Hillier, F. S., & Lieberman, G. J. (2021). *Introduction to Operations Research* (11th ed.). McGraw-Hill.
- Nocedal, J., & Wright, S. J. (2006). *Numerical Optimization* (2nd ed.). Springer. *Complementaria:*
 - Kroese, D. P., et al. (2019). Data Science and Machine Learning: Mathematical and Statistical Methods. CRC Press.
 - Bressert, E. (2012). SciPy and NumPy: An Overview for Developers. O'Reilly.
 - Pinedo, M. L. (2016). Scheduling: Theory, Algorithms, and Systems (5th ed.). Springer.

Nombre de la Asignatura: Herramientas y Tecnologías

Objetivo

Desarrollar en el estudiante la capacidad de seleccionar, aplicar y evaluar herramientas y tecnologías contemporáneas utilizadas en la ingeniería, mediante el análisis de sus principios, funcionalidades y alcances, con el fin de integrarlas eficazmente en el diseño, desarrollo y gestión de soluciones innovadoras que respondan a necesidades específicas en entornos locales, regionales o globales.

Unidades

Fundamentos de herramientas tecnológicas aplicadas a la ingeniería

- Panorama actual de herramientas tecnológicas
- Clasificación y criterios de selección

Entornos de desarrollo y lenguajes de programación

- IDEs y sistemas de control de versiones
- Lenguajes de programación de alto nivel
- Frameworks y librerías especializadas

Tecnologías emergentes para la ingeniería

- Internet de las Cosas (IoT)
- Inteligencia Artificial y Aprendizaje Automático
- Realidad aumentada y virtual

Plataformas colaborativas y gestión de proyectos tecnológicos

- Herramientas de gestión de proyectos (Trello, Jira, Asana)
- Plataformas de trabajo colaborativo (GitHub, GitLab, Google Workspace)
- Métodos ágiles (Scrum, Kanban)

Objetivo particular

Fundamentos de herramientas tecnológicas aplicadas a la ingeniería

Comprender el papel de las herramientas tecnológicas en los procesos de ingeniería y su impacto en la resolución de problemas.

Entornos de desarrollo y lenguajes de programación

Aplicar entornos de desarrollo y lenguajes de programación modernos en la solución de problemas específicos de ingeniería.

Tecnologías emergentes para la ingeniería

Analizar y emplear tecnologías emergentes con potencial de impacto en el desarrollo de soluciones innovadoras.

Plataformas colaborativas y gestión de proyectos tecnológicos

Implementar herramientas colaborativas para la planificación, ejecución y seguimiento de proyectos de ingeniería.

Metodología de trabajo

La asignatura se desarrollará mediante sesiones prácticas, análisis de casos, exposiciones temáticas y el desarrollo progresivo de proyectos tecnológicos, centrados en el uso e integración de herramientas digitales actuales y emergentes aplicables a la ingeniería.

Durante el curso, los estudiantes explorarán diversas plataformas, entornos de programación, tecnologías emergentes y sistemas colaborativos a través de actividades guiadas y trabajos individuales y grupales. Se fomentará el aprendizaje activo mediante la resolución de problemas reales y simulados, utilizando herramientas como editores de código, control de versiones, entornos virtuales, frameworks de desarrollo y plataformas de gestión de proyectos.

Las sesiones prácticas estarán orientadas a que el estudiante pueda instalar, configurar, probar y documentar el uso de herramientas tecnológicas. También se promoverá el trabajo colaborativo mediante el uso de plataformas como GitHub, Google Workspace o Trello, integrando metodologías ágiles para la gestión de proyectos.

A lo largo del curso, se asignarán retos tecnológicos, prácticas de laboratorio, investigaciones cortas y presentaciones orales que fortalezcan la autonomía, la toma de decisiones tecnológicas fundamentadas y la comunicación efectiva. Los estudiantes deberán generar evidencias que demuestren el dominio práctico y reflexivo de las herramientas abordadas.

La evaluación será continua y se basará en la participación activa, la calidad técnica de los productos entregables, la pertinencia de las herramientas seleccionadas en cada proyecto, la capacidad de integración tecnológica y la claridad en la documentación y presentación de resultados.

Criterios de evaluación

- Correcta instalación y uso de herramientas tecnológicas
- Capacidad para comparar y justificar la selección de herramientas
- Eficiencia en el desarrollo de soluciones tecnológicas
- Documentación clara y detallada del uso de herramientas
- Capacidad para integrar múltiples tecnologías en un entorno funcional

Bibliografía

Básica:

- Russell, S., & Norvig, P. (2021). Artificial Intelligence: A Modern Approach (4th ed.).
 Pearson.
- Kurose, J. F., & Ross, K. W. (2021). Computer Networking: A Top-Down Approach (8th ed.).
- Goodfellow, I., Bengio, Y., & Courville, A. (2020). Deep Learning. MIT Press.

Complementaria:

- Bass, L., Weber, I., & Zhu, L. (2020). DevOps: A Software Architect's Perspective. Addison-Wesley Professional.
- Fitzgerald, B., & Stol, K.-J. (2020). Continuous Software Engineering. Springer.

SEGUNDO SEMESTRE

Nombre de la Asignatura: Seminario de Investigación I

Objetivo

Desarrollar habilidades para la revisión crítica y análisis de literatura científica, así como la formulación de propuestas de investigación innovadoras, que permitan al alumno sentar las bases teóricas y metodológicas necesarias para el diseño y ejecución de proyectos de investigación en ciencias de la ingeniería.

Unidades	Objetivo particular

Introducción a la investigación científica

- Conceptos básicos de investigación
- Tipos y enfoques de investigación
- Ética en la investigación científica
- Identificación de problemas de investigación

Revisión y análisis crítico de literatura

- Fuentes de información científica
- Estrategias de búsqueda bibliográfica
- Evaluación y síntesis de artículos científicos
- Uso de gestores bibliográficos

Formulación de problemas y objetivos de investigación

- Características de un buen problema de investigación
- Formulación de hipótesis y preguntas de investigación
- Definición de objetivos generales y específicos
- Delimitación del alcance de la investigación

Diseño y planificación de proyectos de investigación

- Metodologías y enfoques de investigación
- Elaboración de propuestas de investigación
- Planificación y cronogramas de trabajo Identificación de recursos y viabilidad

Introducción a la investigación científica Comprender los fundamentos de la investigación científica y su importancia en el desarrollo de la ingeniería.

Revisión y análisis crítico de literatura

Desarrollar habilidades para buscar, seleccionar y analizar críticamente literatura científica relevante.

Formulación de problemas y objetivos de investigación

Aprender a definir problemas claros y precisos, así como establecer objetivos de investigación adecuados.

Diseño y planificación de proyectos de investigación

Diseñar la estructura básica de un proyecto de investigación y planificar sus etapas principales.

Metodología de trabajo

La asignatura se desarrollará en modalidad presencial, mediante sesiones de análisis teórico, discusiones guiadas, talleres prácticos y exposiciones orales, con el objetivo de fortalecer en el estudiante la comprensión del proceso de investigación científica, así como su capacidad para formular propuestas viables y relevantes en el ámbito de la ingeniería.

Durante el curso, se trabajará con textos científicos actuales, permitiendo al estudiante adquirir habilidades en la búsqueda, selección y análisis crítico de literatura especializada. Se promoverá el uso de bases de datos académicas, motores de búsqueda científicos y gestores bibliográficos como Mendeley o Zotero para el manejo adecuado de referencias.

Las sesiones incluirán ejercicios de redacción académica, evaluación de artículos científicos, construcción de marcos teóricos y definición de problemas de investigación. Asimismo, se realizarán actividades individuales y colaborativas enfocadas en la formulación de hipótesis, objetivos de investigación y planes de trabajo fundamentados en metodologías pertinentes.

A través de exposiciones periódicas y la retroalimentación docente, el estudiante desarrollará su capacidad de argumentación, comunicación científica y análisis crítico. Se incentivará la reflexión ética y la pertinencia social de los temas seleccionados. La evaluación será continua, considerando el progreso en la construcción de la propuesta de investigación, la calidad del análisis bibliográfico, la claridad conceptual y metodológica, así como la participación activa, la responsabilidad en la entrega de avances y la solidez en la defensa oral del proyecto.

Criterios de evaluación

- Calidad y profundidad del análisis bibliográfico
- Claridad y coherencia en las presentaciones orales
- Capacidad para argumentar y defender ideas
- Originalidad y viabilidad de las propuestas de investigación
- Responsabilidad y compromiso en las actividades académicas

Bibliografía

Básica:

- Creswell, J. W., & Creswell, J. D. (2021). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches (5^a ed.). SAGE Publications.
- Hernández Sampieri, R., Fernández Collado, C., & Baptista Lucio, P. (2020). Metodología de la investigación (7ª ed.). McGraw-Hill.
- Kumar, R. (2020). Research Methodology: A Step-by-Step Guide for Beginners (5^a ed.).
 SAGE Publications.
- Flick, U. (2020). An Introduction to Qualitative Research (6^a ed.). SAGE Publications.

Complementaria:

- Mertens, D. M. (2020). Research and Evaluation in Education and Psychology: Integrating Diversity With Quantitative, Qualitative, and Mixed Methods (5^a ed.). SAGE Publications.
- Patten, M. L., & Newhart, M. (2021). Understanding Research Methods: An Overview of the Essentials (11^a ed.). Routledge.
- Leedy, P. D., & Ormrod, J. E. (2021). Practical Research: Planning and Design (12^a ed.). Pearson.

Nombre de la Asignatura: Optativa I

Consultar en el periodo

Nombre de la Asignatura: Optativa II

Consultar en el periodo

Nombre de la Asignatura: Optativa III

Consultar en el periodo

TERCER SEMESTRE

Nombre de la Asignatura: Seminario de Investigación II

Objetivo

Consolidar las habilidades de investigación científica y tecnológica del estudiante mediante la presentación, análisis crítico y argumentación académica de los avances de su proyecto de tesis, fortaleciendo su capacidad para estructurar documentos científicos, realizar presentaciones orales especializadas y defender sus propuestas ante una comunidad académica, con el fin de garantizar la calidad, viabilidad e impacto potencial de su trabajo.

Unidades

Objetivo particular

Presentación y evaluación del marco teórico y metodológico del proyecto de tesis

- Revisión del estado del arte y justificación científica
- Definición y delimitación del problema de investigación
- Construcción de hipótesis o preguntas de investigación
- Diseño metodológico y técnicas de recolección de datos
- · Viabilidad y alcance del estudio

Análisis y evaluación de resultados preliminares

- Organización y presentación de resultados parciales
- Validación y confiabilidad de los datos
- Análisis de resultados en relación con los objetivos planteados
- Retroalimentación académica y mejora continua

Comunicación científica y defensa del trabajo de investigación

- Estructura de artículos científicos y tesis
- Elaboración de resúmenes, conclusiones y aportaciones
- Técnicas para presentaciones orales efectivas
- Simulación de defensa académica

Presentación y evaluación del marco teórico y metodológico del proyecto de tesis

Analizar y argumentar críticamente la estructura teórica y metodológica del proyecto, identificando fortalezas, debilidades y áreas de mejora.

Análisis y evaluación de resultados preliminares

Presentar, discutir y validar los avances experimentales o teóricos obtenidos hasta el momento, contrastándolos con el marco conceptual establecido.

Comunicación científica y defensa del trabajo de investigación

Desarrollar competencias de expresión oral y escrita para la divulgación y defensa del proyecto de tesis ante audiencias especializadas.

Metodología de trabajo

La asignatura se impartirá en modalidad presencial, a través de sesiones centradas en la exposición, análisis y evaluación crítica de los avances del proyecto de tesis. Se promoverá un entorno académico riguroso y colaborativo que favorezca el fortalecimiento de las competencias de investigación, argumentación y comunicación científica del estudiante.

Durante el curso, los alumnos presentarán periódicamente los elementos centrales de su proyecto de tesis, incluyendo el marco teórico, diseño metodológico, resultados preliminares y conclusiones, con el propósito de someterlos a discusión y retroalimentación por parte del

docente y sus compañeros. Estas sesiones estarán orientadas al perfeccionamiento del planteamiento de la investigación, la coherencia metodológica y la viabilidad del estudio.

Se realizarán talleres de redacción académica para mejorar la estructura, claridad y rigor del documento de tesis, así como actividades prácticas de preparación para la defensa oral del proyecto, que incluirán simulaciones y ejercicios de exposición frente a audiencias especializadas. También se abordarán aspectos técnicos como la elaboración de resúmenes, artículos científicos y materiales de apoyo visual.

El curso enfatizará la evaluación crítica de los datos obtenidos, su validación, y la interpretación adecuada en función de los objetivos y el marco teórico. La participación activa, la apertura al diálogo académico y la disposición al mejoramiento continuo serán elementos clave en el desarrollo de las sesiones. La evaluación será formativa y continua, considerando el avance real del proyecto, la calidad y coherencia de los documentos entregados, la capacidad de argumentación en las exposiciones orales, así como el compromiso mostrado en la consolidación de una propuesta de investigación sólida, pertinente y con potencial de impacto.

Criterios de evaluación

- Grado de avance con respecto al plan de tesis
- Calidad en la redacción académica
- Claridad y solidez de la exposición oral
- Coherencia metodológica del trabajo presentado
- Compromiso y responsabilidad en el desarrollo del proyecto

Bibliografía

Básica:

- Flick, U. (2020). Introducing Research Methodology: A Beginner's Guide to Doing a Research Project (3rd ed.). SAGE Publications.
- Machi, L. A., & McEvoy, B. T. (2021). The Literature Review: Six Steps to Success (4th ed.).
 Corwin Press.

Complementaria:

- Creswell, J. W., & Creswell, J. D. (2022). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches (6th ed.). SAGE Publications.
- Day, R. A., & Gastel, B. (2020). How to Write and Publish a Scientific Paper (9th ed.).
 Cambridge University Press.

Nombre de la Asignatura: Proyecto de Tesis I

Obietivo

Guiar al estudiante en la identificación, delimitación y formulación de un problema de investigación en el campo de las ciencias de la ingeniería, mediante el desarrollo de una propuesta metodológica rigurosa y viable, que siente las bases para la elaboración de su tesis de maestría, promoviendo la originalidad, la innovación y el rigor científico en la generación de nuevo conocimiento.

Unidades	Objetivo particular
Formulación del problema de investigación • Delimitación del problema	Formulación del problema de investigación
 Formulación de objetivos generales y específicos Construcción de hipótesis y preguntas de investigación Identificación y definición de variables 	Definir claramente el problema de investigación, sus objetivos, hipótesis y variables.

Marco teórico y revisión bibliográfica

- Búsqueda y selección de fuentes bibliográficas
- Técnicas de revisión bibliográfica
- Elaboración del marco teórico
- Criterios para la evaluación de literatura científica

Diseño metodológico

- Tipos de diseño de investigación
- Métodos y técnicas de recolección de datos
- Población y muestra
- Instrumentos de medición y validación

Elaboración de la propuesta de investigación

- Estructura de la propuesta de tesis
- · Redacción científica y normas APA
- Cronograma y recursos necesarios
- Evaluación y retroalimentación de la propuesta

Marco teórico y revisión bibliográfica

Elaborar un marco teórico sólido mediante la revisión y análisis crítico de fuentes académicas y científicas.

Diseño metodológico

Diseñar la metodología adecuada para abordar el problema de investigación con rigor científico.

Elaboración de la propuesta de investigación

Integrar los elementos desarrollados en un documento formal de propuesta de investigación para la tesis.

Metodología de trabajo

La asignatura se desarrollará en modalidad presencial y se organizará en sesiones teóricoprácticas orientadas a la elaboración progresiva de la propuesta de investigación. El proceso de trabajo se fundamenta en la tutoría constante y la retroalimentación continua, con el objetivo de acompañar al estudiante en la construcción rigurosa y coherente de cada componente de su proyecto de tesis.

Durante el curso, los alumnos realizarán actividades individuales y en grupo que incluyen la búsqueda y análisis crítico de literatura científica, formulación precisa del problema de investigación, definición de objetivos e hipótesis, así como el diseño metodológico adecuado para su estudio. Se promoverán talleres de redacción científica para el desarrollo de habilidades en la estructuración de documentos formales, aplicando normas de citación y estilo académico. Asimismo, se emplearán sesiones de discusión y revisión colectiva para fomentar el pensamiento crítico y la capacidad de argumentación.

Los estudiantes presentarán avances parciales que serán evaluados cualitativa y cuantitativamente, facilitando la identificación de fortalezas y áreas de mejora en cada etapa. Se enfatizará la planificación ordenada del trabajo mediante cronogramas y el manejo eficiente de recursos. La metodología busca también fortalecer la responsabilidad y el compromiso con los plazos establecidos, propiciando un ambiente colaborativo que estimule la innovación y el rigor científico en la generación del proyecto de tesis.

Criterios de evaluación

- Claridad y pertinencia del problema planteado
- Viabilidad y rigor metodológico
- Profundidad en la revisión bibliográfica
- Coherencia y estructuración del anteproyecto
- Capacidad de argumentación y defensa del proyecto
- Responsabilidad y compromiso con los tiempos establecidos

Bibliografía

Básica:

- Creswell, J. W., & Creswell, J. D. (2021). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches (5^a ed.). SAGE Publications.
- Hernández Sampieri, R., Fernández Collado, C., & Baptista Lucio, P. (2020). Metodología de la investigación (7ª ed.). McGraw-Hill.
- Kumar, R. (2020). Research Methodology: A Step-by-Step Guide for Beginners (5^a ed.).
 SAGE Publications.

Complementaria:

- Flick, U. (2020). An Introduction to Qualitative Research (6^a ed.). SAGE Publications.
- Mertens, D. M. (2020). Research and Evaluation in Education and Psychology: Integrating Diversity With Quantitative, Qualitative, and Mixed Methods (5^a ed.). SAGE Publications.

CUARTO SEMESTRE

Nombre de la Asignatura: Seminario de Investigación III

Objetivo

Consolidar en el estudiante las competencias necesarias para la integración final, redacción formal, análisis crítico y defensa argumentativa de su trabajo de investigación, permitiéndole generar un documento académico que refleje el rigor metodológico, la aportación científica o tecnológica y la viabilidad de su propuesta, en el marco de los estándares de la Maestría en Ciencias de la Ingeniería.

Unidades

Estructura final del documento de tesis

- Normas editoriales y formato institucional
- Organización lógica de capítulos
- Redacción formal de introducción, justificación, objetivos y conclusiones
- Integración de resultados y discusión crítica

Revisión crítica y argumentación

- Evaluación de coherencia entre objetivos, metodología y resultados
- Análisis de limitaciones y aportaciones del trabajo
- Revisión por pares y retroalimentación académica
- Preparación de anexos y referencias bibliográficas

Presentación y defensa del proyecto

- Preparación de materiales de apoyo (diapositivas, resumen ejecutivo)
- Técnicas de presentación oral efectiva
- Preguntas frecuentes en defensa de tesis
- Evaluación y retroalimentación de ensayos de defensa

Objetivo particular

Estructura final del documento de tesis

Guiar al estudiante en la integración completa del documento de tesis con base en las normas institucionales y estándares académicos del posgrado.

Revisión crítica y argumentación

Desarrollar en el estudiante habilidades para la revisión crítica de su trabajo y el fortalecimiento de la argumentación académica.

Presentación y defensa del proyecto

Preparar al estudiante para la presentación oral y defensa pública del trabajo de tesis, desarrollando habilidades de comunicación científica efectiva.

Metodología de trabajo

El curso se desarrollará mediante sesiones presenciales que combinarán actividades individuales y grupales, centradas en la elaboración, revisión y presentación del documento final de tesis. Se fomentará un trabajo progresivo y organizado, orientado a la integración completa y coherente de todos los componentes del proyecto de investigación.

Los estudiantes realizarán revisiones críticas guiadas por el profesor y sus pares, con el fin de fortalecer la calidad científica y metodológica del trabajo. Se promoverán talleres de redacción académica para consolidar las habilidades en la escritura formal, el manejo de normas editoriales y la correcta citación bibliográfica.

Además, se impartirán sesiones prácticas de preparación para la defensa oral, incluyendo el diseño de materiales de apoyo, técnicas de comunicación efectiva y simulaciones de presentación con retroalimentación personalizada.

Posgrado e Investigación

La evaluación será continua y formativa, considerando avances entregados, calidad del documento, participación en actividades de revisión y desempeño en ensayos de defensa. Se enfatizará la responsabilidad en el cumplimiento de los tiempos establecidos y la colaboración entre compañeros para un ambiente académico enriquecedor.

Criterios de evaluación

- Calidad y profundidad del contenido escrito
- Rigor y validez de los resultados presentados
- Capacidad de síntesis y argumentación en la presentación oral
- Originalidad y aporte científico del trabajo realizado
- Cumplimiento de los tiempos y metas establecidas

Bibliografía

Básica:

- Booth, W. C., Colomb, G. G., & Williams, J. M. (2020). The Craft of Research (4th ed.).
 University of Chicago Press.
- Turabian, K. L. (2020). A Manual for Writers of Research Papers, Theses, and Dissertations (9th ed.). University of Chicago Press.

Complementaria:

- Alley, M. (2022). The Craft of Scientific Presentations: Critical Steps to Succeed and Critical Errors to Avoid (2nd ed.). Springer.
- Glasman-Deal, H. (2020). Science Research Writing for Non-Native Speakers of English (2nd ed.). Imperial College Press.

Nombre de la Asignatura: Proyecto de Tesis II

Objetivo

Desarrollar de manera integral el proyecto de tesis, aplicando técnicas avanzadas de investigación y análisis para obtener resultados científicos sólidos, que permitan la generación de nuevo conocimiento en el área de las ciencias de la ingeniería, además de preparar la presentación y defensa del trabajo ante un comité académico.

Unidades

Desarrollo y avance del proyecto de investigación

- Revisión y ajuste del planteamiento del problema
- Aplicación de técnicas y métodos para la recolección y análisis de datos
- Control y seguimiento del cronograma de actividades
- Identificación y resolución de problemas durante el desarrollo

Análisis e interpretación de resultados

- Técnicas de análisis estadístico y cualitativo
- Validación y verificación de resultados
- Interpretación crítica de los datos
- Elaboración de gráficos y tablas para la presentación

Objetivo particular

Desarrollo y avance del proyecto de investigación

Consolidar el avance del proyecto de tesis mediante la ejecución rigurosa del plan de trabajo y la aplicación de metodologías científicas.

Análisis e interpretación de resultados

Analizar e interpretar los datos obtenidos para validar hipótesis y sustentar conclusiones sólidas.

Redacción científica y documentación del proyecto

- Estructura y formato de la tesis
- Normas de citación y referencias (APA, IEEE, etc.)
- Redacción clara y coherente
- Revisión y corrección de estilo

Defensa del proyecto

- Técnicas de presentación efectiva
- Elaboración de material de apoyo (diapositivas, posters)
- Manejo de preguntas y discusión crítica
- Evaluación y retroalimentación

Evaluación y retroalin Metodología de trabajo

Defensa del proyecto

académicas y científicas.

del provecto

Preparar y ejecutar la presentación oral y defensa del proyecto de tesis ante el comité académico.

Redacción científica y documentación

Elaborar de manera clara y estructurada el

documento final de tesis siguiendo normas

El curso se desarrollará a través de un proceso estructurado y supervisado de trabajo autónomo y colaborativo, en el que el estudiante avance en la ejecución y consolidación de su proyecto de investigación bajo la guía del asesor de tesis.

Las actividades incluirán la recopilación y análisis de datos mediante técnicas cuantitativas y cualitativas, así como la documentación sistemática de resultados parciales para retroalimentación continua. Se fomentará el uso de herramientas digitales para la organización del proyecto, gestión del tiempo y elaboración de reportes técnicos.

Se realizarán revisiones periódicas con el comité asesor para evaluar avances, discutir dificultades y ajustar el plan de trabajo según sea necesario. Adicionalmente, se llevarán a cabo talleres de redacción científica para fortalecer las habilidades de presentación escrita y oral.

Para la fase final, el estudiante preparará materiales de apoyo (diapositivas, posters) y participará en simulacros de defensa con retroalimentación orientada a mejorar la claridad, argumentación y manejo de preguntas ante el comité académico.

La evaluación será continua y basada en el progreso, calidad de los documentos entregados, desempeño en presentaciones y cumplimiento de los objetivos definidos en el cronograma.

Criterios de evaluación

- Originalidad y relevancia de los resultados obtenidos
- Rigor científico y metodológico en la ejecución
- Calidad en la redacción y presentación de documentos
- Cumplimiento de objetivos y metas establecidas
- Capacidad de análisis crítico y solución de problemas
- Proactividad en la difusión y publicación de resultados

Bibliografía

Básica:

- Hernández Sampieri, R., Fernández Collado, C., & Baptista Lucio, P. (2020). Metodología de la investigación (7ª ed.). McGraw-Hill.
- Kumar, R. (2020). Research Methodology: A Step-by-Step Guide for Beginners (5^a ed.).
 SAGE Publications.

Complementaria:

• Creswell, J. W., & Creswell, J. D. (2021). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches (5^a ed.). SAGE Publications.

